金史·志第三 历下(2)
时间:2023-01-18 作者:脱脱 点击:次
求晨昏月度 置其日晨分,乘其日算外转定分,日法而一,为晨转分。用减定分,余为昏转分。又以朔、弦、望定小余、乘转定分,日法而一,为加时分。以减晨、昏转分,为前;不足,覆减之,为后。乃前加后减加时月度,即晨昏月所在宿度及分秒。 求朔弦望晨昏定程 各以其朔昏定月,减上弦昏定月,余为朔后昏定程。以上弦昏定月,减望昏定,余为上弦后昏定程。以望晨定月,减下弦晨定月,余为望后晨定程。以下弦晨定月,减后朔晨定月,余为下弦后晨定程。 求每日转定度 累计每程相距日下转积度,与晨昏定程相减,余以相距日数除之,为日差,定程多加之,定程少减之。以加减每日转定分,为转定度。因朔、弦、望晨昏月,每日累加之,满宿次去之,为每日晨昏月度及分秒。凡注历:朔日以后注昏月,望后一日注晨月。古历有九道月度,其数虽繁,亦难削去,具其术如后。 求平交日辰 置交终日及余秒,以其月经朔加时入交泛日及余秒减之,为平交入其月经朔加时后日及余秒。以加其月经朔大小余,其大余命甲子算外,即平交日辰及余秒。求次交者,以交终日及余秒加之,大余满纪法去之,命如前,即次平交日辰及余秒。 求平交入转朓棵定数 置平交小余,加其日夜半入转余,以乘其日损益率,日法而一,所得,以损益其下朓朒积,为定数。 求正交日辰 置平交小余,以平交入转朓棵定数,朓减朒加之,满与不足,进退日辰,即正交日辰及余秒。与定朔日辰相距,即所在月日。 求经朔加时中积 各以其月经朔加入气日及余,加其气中积余,其日命为度,其余以日法退除为分秒,即其经朔加时中积度及分秒。 求正交加时黄道月度 置平交入经朔加时后算及余秒,以日法通日,内余,进二位,如三万九千一百二十一分为度,不满退除为分秒,以加其月经朔加时中积,然后以冬至加时黄道日度加而命之,即其得其月正交加时月离黄道宿度及分秒。如求次交者,以交终度及秒加而命之,即得所求。 求黄道宿积度 置正交时黄道宿全度,以正交加时月离黄道宿度及分秒减之,余为距后度及分秒,以黄道宿度累加之,即各得正交后黄道宿积度及分秒。 求黄道宿积度入初末限 置黄道宿积度及分秒,满交象度及分秒去之,如在半交象以下,为初限;以上者,以减交象度及分秒,余为入末限。入交积度交象度并在交会术中。 求月行九道宿度 凡月行所交:冬入阴历,夏入阳历,月行青道。冬至夏至后,青道半交在春分之宿,当黄道东。立冬立夏后,青道半交在立春之宿,当黄道东南。至所冲之宿亦如之。冬入阳历,夏入阴历,月行白道。冬至夏至后,白道半交在秋分之宿,当黄道西。立冬立夏后,白道半交在立秋之宿,当黄道西北。至所冲之宿亦如之。春入阳历,秋入阴历,月行硃道。春分秋分后,硃道半交在夏至之宿,当黄道南。立春立秋后,硃道半交在立夏之宿,当黄道西南。至所冲之宿亦如之。春入阴历,秋入阳历,月行黑道。春分秋分后,黑道半交在冬至之宿当黄道北。立春立秋后,黑道半交在立冬之宿,当黄道东北。至所冲之宿亦如之。四序离为八节,至阴阳之所交,皆与黄道相会,故月行有九道。各以所入初末限度及分秒,减一百一度,余以所入初末限度及分乘之,半而退位为分,分满百为度,命为月道与黄道泛差。凡日以赤道内为阴,外为阳;月以黄道内为阴,外为阳。故月行正交,入夏至后宿度内为同名,入冬至后宿度内为异名。其在同名者,置月行与黄道泛差,九因八约之,为定差,半交后,正交前,以差减;正交后,半交前,以差加。此加减出入六度,正,如黄赤道相交同名之差,若较之渐异,则随交所在,迁变不同也。仍以正交度距秋分度数,乘定差,如象限而一,所得为月道与赤道定差。前加者为减,减者为加。其中异名者,置月行与黄道泛差,七因八约之,为定差。半交后,以差加;正交后,半交前,以差减。此加减出入六度,异,如黄道赤道相交异名之差,较之渐同,则随交所迁变不常。仍以正交度距春分度数,乘定差,如象限而一,所得为月道与赤道定差。前加者为减,减者为加。各加减黄道宿积度,为九道宿积度。以前宿九道积度减之,为其宿九道度及分。其分就近约为太半少。论春夏秋冬以四时日所在宿度为正。 |