雨枫轩 > 雨枫书屋 > 经典名著 >

清史稿·卷四十八 志二十三(2)

  求日出入昼夜时刻,以本天半径为一率,北极高度之正切为二率,本日距纬度之正切为三率,求得四率为正弦,检表得日出入在卯酉前后赤道度。变时,一度变时之四分,凡言变时皆仿此。为距卯酉分。以加减卯酉时,即得日出入时刻。春分前、秋分后,以加卯正为日出,减酉正为日入。春分后、秋分前,以减卯正为日出,加酉正为日入。又倍距卯酉分,以加减半昼分,得昼夜时刻。春分后以加得昼刻,以减得夜刻,秋分后反是。
  月离用数
  太阴每日平行四万七千四百三十五秒,小馀0二一一七七。
  太阴每时四刻。平行一千九百七十六秒,小馀四五九二一五七。
  月孛即最高,每日行四百0一秒,小馀0七七四七七。
  正交每日平行一百九十秒,小馀六四。
  本轮半径五十八万。
  均轮半径二十九万。
  负圈半径七十九万七千。
  次轮半径二十一万七千。
  次均轮半径一十一万七千五百。
  朔、望黄白大距四度五十八分三十秒。
  两弦黄白大距五度一十七分三十秒。
  黄白大距中数五度0八分。
  黄白大距半较九分三十秒。
  太阴平行应一宫0八度四十分五十七秒十六微。
  月孛应三宫0四度四十九分五十四秒0九微。
  正交应六宫二十七度十三分三十七秒四十八微。
  推月离法求天正冬至,同日躔。
  求太阴平行,置中积分,加气应详日躔。小馀,不用日,下同。减天正冬至小馀,得积日。上考则减气应小馀,加天正冬至小馀。与太阴每日平行相乘,满周天秒数去之,馀数收为宫度分。以加太阴平行应,得太阴年根。上考则减,又置太阴每日平行,以距天正冬至次日数乘之,得数为秒。以宫度分收之,与年根相并,满十二宫去之。为太阴平行。
  求月孛行,以积日见前条,下同。与月孛每日行相乘,满周天秒数去之,馀数收为宫度分。以加月孛应,得月孛年根。上考则减。又置月孛每日行以距天正冬至次日数乘之,得数为秒,以宫度分收之,与年根相并,满十二宫去之。为月孛行。
  求正交平行,以积日与正交每日平行相乘,满周天秒数去之,馀数收为宫度分,以减正交应,正交应不足减者,加十二宫减之。得正交年根。上考则加。又置正交每日平行,以距天正冬至次日数乘之,得数为秒,以宫度分收之,以减年根,年根不足减者,加十二宫减之。为正交平行。
  求用时太阴平行,以本日太阳均数变时,详日躔。得均数时差。均数加者,时差为减;均数减者,时差为加。又以本日太阳黄、赤经度详日躔。相减馀数变时,得升度时差。二分后为加,二至后为减。乃以两时差相加减,为时差总。两时差加减同号者,则相加为总,加者仍为加,减者仍为减。加减异号者,则相减为总,加数大者为加,减数大者为减。化秒,与太阴每时平行相乘为实,以一度化秒为法除之,得数为秒,以度分收之,得时差行。以加减太阴平行,时差总为加者则减,减者则加。为用时太阴平行。
  求初实行,置用时太阴平行,减去月孛行,得引数。用平三角形,以本轮半径之半为对正角之边,以引数为一角,求得对角之边三因之。又求得对又一角之边,与本天半径相加减。引数九宫至二宫相加,三宫至八宫相减。复用平三角形,以三因数为小边,加减本天半径数为大边,正角在两边之中,求得对小边之角为初均数,并求得对正角之边。即次轮最近点距地心之线。乃置用时太阴平行,以初均数加减之,引数初宫至五宫为减,六宫以后为加。为初实行。
  求白道实行,置初实行,减本日太阳实行得次引。即距日度。用平三角形,以次轮最近点距地心线为一边,倍次引之通弦本天半径为一率,次引之正弦为二率,次轮半径为三率,求得四率倍之即通弦。为一边;以初均数与引数减半周之度引数不及半周,则与半周相减,如过半周,则减去半周。相加,又以次引距象限度次引不及象限,则与象限相减;如过象限及过三象限,则减去象限及三象限,用其馀;如过二象限,则减去二象限,馀数仍与象限相减,为次引距象限度。加减之,初均数减者,次引过象限或过三象限则相加,不过象限或过二象限则相减。初均数加者反是。为所夹之角,若相加过半周,则与全周相减,用其馀为所夹之角。若相加適足半周或相减无馀,则无二均数。若次引为初度,或適足半周,亦无二均数。求得对通弦之角为二均数,如无初均数,以次轮心距地心为一边,次轮半径为一边;次引倍数为所夹之角,次引过半周者,与全周相减,用其馀;在最高为所夹之内角,在最卑为所夹之外角,求得对次轮半径之角为二均数。随定其加减号。以初均数与均轮心距最卑之度相加,为加减泛限。泛限適足九十度,则二均加减与初均同。如泛限不足九十度,则与九十度相减,馀数倍之,为加减定限。初均减者,以次引倍度;初均加者,以次引倍度减全周之馀数,皆与定限较。如泛限过九十度者,减去九十度,馀数倍之,为加减定限。初均加者,以次引倍度;初均减者,以次引倍度减全周之馀数,皆与定限较。并以大於定限,则二均之加减与初均同;小於定限者反是。并求得对角之边,为次均轮心距地心线。又以此线及次引,用平三角形,以次均轮心距地为一边,次均轮半径为一边,次引倍度为所夹之角,次引过半周者,与全周相减,用其馀。求得对次均轮半径之角为三均数,随定其加减号。次引倍度不及半周为加,过半周为减。乃以二均数与三均数相加减,为二三均数。两均数同号则相加,异号则相减。以加减初实行,两均数同为加者仍为加,同为减者仍为减。一为加一为减者,加数大为加,减数大为减。为白道实行。


作品集
相关文章: