雨枫轩 > 雨枫书屋 > 经典评论 >

暗能量真的存在吗?(2)


  
  我们不妨看一看下面这种模型,这是南非开普敦大学(University of Cape Town)的乔治·埃利斯(George Ellis)、查尔斯·赫拉比(Charles Hellaby)和纳齐姆·穆斯塔法(Nazeem Mustapha)最先提出,后来被法国巴黎-默东天文台(Paris-Meudon Observatory)的玛丽-诺埃勒·塞莱里耶(Marie-Noelle Célérier)进一步发展的:首先,假设宇宙各处膨胀都在减速,因为物质总是在吸引时空,阻止它向外膨胀;然后,假设我们居住在一个超级庞大的宇宙巨洞(cosmic void)之中——巨洞内部并非空无一物,只不过平均物质密度仅为其他地方的一半甚至三分之一。一块空间区域越是空旷,内部包含的、能减缓空间膨胀的物质就越少;因此,巨洞内部的膨胀速度要比其他地方更快——正中央膨胀最为迅速,越靠近边缘膨胀越慢,因为巨洞外密度较高的区域在边缘附近已经开始发挥作用了。任何时刻,空间不同部分的膨胀速度都不相同,就像那些奇形怪状的气球充气时膨胀不均匀一样。
  
  设想一些超新星在这个不均匀宇宙中的不同位置爆发,有些靠近巨洞中心,有些靠近巨洞边缘,还有一些位于巨洞之外。如果我们靠近巨洞中心,一颗超新星距离我们越远,它周围空间的膨胀速度就越慢。它发出的光在向我们传播的过程中,所经区域的膨胀速度会越来越快。光经过每一块区域,空间膨胀都会把光波拉长一点,这种效应累积起来产生了我们观测到的红移。光在这样一个宇宙中传播一定距离后产生的红移,要比在以相同速度(即我们周边的膨胀速度)整体膨胀的宇宙中产生的红移略低一些。反过来,光在这样一个宇宙中要达到一定的红移,它的传播距离就必须比膨胀速度一致的宇宙里光的传播距离更长——也就是说,这颗超新星必须离我们更远,因而看起来更暗。
  
  换句话说,这个模型把膨胀速度的变化从时间上“转移”到了空间上。通过这种方式,宇宙学家不需要引入暗能量,就能解释“超新星亮度暗于预期”这一观测事实。为了让这套“另类”解释行得通,我们必须生活在一个真正达到宇宙尺度的巨洞之中。超新星观测的范围已经延伸到几十亿光年之外,占据了整个可观测宇宙中很大的一部分。要想解释这些观测数据,巨洞的大小就必须达到类似的尺度。无论以谁的标准来看,这都足够称得上“巨大”了。
  
  牵强附会?
  这样一个宇宙巨洞有多古怪呢?它似乎公然违背了宇宙微波背景(天文学家观测到微波背景在各方向上强度相差不超过1/100 000),更不用说星系在空间中看似均匀的分布了。然而,更仔细的审视表明,这些证据也许不足以确凿无疑地排除宇宙巨洞。
  
  背景辐射强度上的均匀一致,要求宇宙在各个方向上看起来几乎一样。如果巨洞大致呈球形,我们离巨洞中心又足够近,这些观测事实就不存在任何问题。此外,微波背景确实存在一些异常特征,或许能够用大尺度的非均匀性来解释。
  
  至于星系分布,现有的巡天观测还无法探测到足够遥远的星系,根本不足以排除尺寸大到能够“模拟”暗能量的超级宇宙巨洞的存在。这些巡天观测发现了大小约为数亿光年的“小型”巨洞、物质纤维及其他结构,但我们此前一直谈论的那个巨洞,尺寸还要再大一个数量级。星系巡天观测有没有证实宇宙学原理,这是天文学界目前正在激烈争论的一个问题。美国纽约大学的戴维·霍格(David Hogg)及其合作者所作的分析表明,宇宙中最大的结构大约为2亿光年;在更大的尺度上,物质的分布似乎均匀平滑,与宇宙学原理相符。但意大利罗马费米中心(Enrico Fermi Center)的弗朗切斯科·西洛斯·拉比尼(Francesco Sylos Labini)及其同事主张,迄今为止发现的最大结构,不过是发现这些结构的星系巡天项目在有限的探测范围内找到的“最大”结构而已。更大的结构或许超出了这些巡天的观测范围。
  
  假设你有一张地图,显示了方圆10千米内的地形,一条公路从地图的一侧延伸到另外一侧。由此得出最长的公路只有10千米长的结论,显然是错误的。要确定最长公路的长度,你需要一张更大的、清楚标明所有公路起止地点的地图,这样你才能知道公路的完整规模。与此类似,天文学家要证明宇宙学原理,就必须进行大规模的星系巡天,探测范围必须超过宇宙中最大的结构才行。现有的巡天观测到底够不够大,这是一个尚在争论的问题。
  
  对理论学家来说,超级巨洞也是一个难以“消化”的东西。现有的所有证据都暗示,星系和纤维、巨洞之类的大尺度结构都是从微观量子涨落中“孕育”而来的(宇宙膨胀把这些微观“种子”放大到了天文学尺度),宇宙学理论能够准确预言特定大小的结构在宇宙中出现的几率。尺寸越大的结构应该越罕见。大到足以“模拟”暗能量的超级宇宙巨洞出现的几率不超过1/10 100。超级巨洞或许真的存在,但在我们能够观测的宇宙中找到一个的可能性,似乎微乎其微。
  
  不过,上述推理可能存在一个漏洞。20世纪90年代初,“早期宇宙标准模型”的提出者之一、美国斯坦福大学的安德烈·林德(Andrei Linde)及其同事证明,尽管超级巨洞很罕见,但它们在宇宙早期的膨胀速度更快,最终占据了大多数宇宙空间。观测者发现自己位于一个超级巨洞内部的可能性,或许根本没那么低。这个结论表明,宇宙学原理(即我们并不居住在一个特殊的位置)和平凡原理(principle of mediocrity,即我们只是普普通通的观测者)之间,并不总能画上等号。看起来,人类在平凡普通的同时,也可以居住在一个特殊的位置。
  
  检测巨洞
  什么样的观测能够判断,是宇宙在暗能量的驱动下加速膨胀,还是我们居住在超级巨洞中心之类的特殊位置?为了检验巨洞是否存在,宇宙学家需要建立一个有效的模型,用来描述空间、时间和物质如何对周边环境作出响应。1933年,阿贝·乔治·勒梅特(Abbé Georges Lema tre)提出的一个宇宙模型恰好符合要求;一年后,理查德·托尔曼 (Richard Tolman)也独立提出了同样的模型,第二次世界大战之后由赫尔曼·邦迪(Hermann Bondi)进一步发展完善。在他们设想的那个宇宙中,膨胀速度不仅取决于时间,还取决于到某个特定位置的距离,这和我们现在的假设如出一辙。


作品集
相关文章: