雨枫轩 > 雨枫书屋 > 经典名著 >

清史稿·卷五十一 志二十六(4)

  求设时对两心实相距角,
  求设时两心视相距,皆与用时同。
  求设时白经高弧交角较,以设时白经高弧交角与用时白经高弧交角相减,即得。
  求设时高弧交用时视距角,以设时白经高弧交角较与用时对两心实相距角相加减,即得。纬北为减,纬南为加。若白经高弧交角过九十度,反是。
  求对设时视行角,以设时高弧交用时视距角与设时对两心实相距角相加减,即得。两实距同在高弧东,或同在西,则减;一东一西者,则加;加过半周者,与全周相减,用其馀。如无设时对两心实相距角,设时高下差大於设时两心实相距,则设时高弧交用时视距角即对设时视行角;设时高下差小於设时两心实相距,则以设时高弧交用时视距角与半周相减,馀为对设时视行角。
  求对设时视距角,用平三角形,以用时两心视相距为一边,设时两心视相距为一边,对设时视行角为所夹之角,即求得对设时视距角。
  求设时视行,以对设时视距角之正弦为一率,设时两心视相距为二率,对设时视行角正弦为三率,求得四率,为设时视行。
  求真时视行,以半径千万为一率,对设时视距角馀弦为二率,用时两心视相距为三率,求得四率,为真时视行。
  求真时两心视相距。以半径千万为一率,对设时视距角正弦为二率,用时两心视相距为三率,求得四率,为真时两心视相距。
  求食甚真时,以设时视行为一率,设时距分为二率,真时视行为三率,求得四率,为真时距分,以加减食甚用时,白经在高弧西则加,在高弧东则减。得食甚真时。
  求真时距弧,
  求真时对距弧角,
  求真时两心实相距,以上三条,法与设时同,但皆用真时度分立算。
  求真时太阳距午赤道度,
  求真时赤经高弧交角,
  求真时太阳距天顶,
  求真时高下差,
  求真时白经高弧交角,
  求真时对两心视相距角,
  求真时对两心实相距角,
  求考真时两心视相距,以上八条,法与用时同,但皆用真时度分立算。
  求真时白经高弧交角较,法同设时,但用真时度分立算。
  求真时高弧交设时视距角,法同设时,加减有异。月在黄道北,设时真时两实距在高弧东西同,惟白经异。设时白经高弧交角小则加,大则减。若白经亦同,反是。若两实距一东一西,则皆相减。月在黄道南,设时交角小则加,大则减。如无设时对两心实相距角,设时高下差大於设时两心实相距,则真时白经高弧交角较,即真时高弧交设时视距角;设时高下差小於设时两心实相距,则以真时白经高弧交角较与半周相减,馀为真时高弧交设时视距角。若白经高弧交角过九十度,纬南如纬北,纬北如纬南。
  求对考真时视行角,法同设时。如设时实距与高弧合,无东西者,设时高下差大於设时两心实相距,则相减,小则加。如真时白经高弧交角较与设时对两心实相距角相等,而减尽无馀,则真时对两心实相距角,即对考真时视行角。或相加適足半周,则真时对两心实相距角与半周相减,即对考真时视行角。
  求对考真时视距角,
  求考真时视行,以上二条,法同设时,但用考真时度分立算。
  求定真时视行,如定真时视行与考真时视行等,则食甚真时即为定真时。如或大或小,再用下法求之。
  求定真时两心视相距,以上二条,法同真时,用考真时度分立算。
  求食甚定真时,以考真时视行为一率,设时距分与真时距分相减馀为二率,定真时视行为三率,求得四率,为定真时距分。以加减食甚设时,白经在高弧东,设时距分小测减,大则加。白经在高弧西,反是。得食甚定真时。
  求食分,以太阳实半径倍之为一率,十分为二率,并径内减定真时两心视相距馀为三率,求得四率,即食分。
  求初亏、复圆前设时,白经在高弧西,食甚用时两心视相距与并径相去不远,即以食甚用时为初亏前设时,小则向前取,大则向后取,量距食甚用时前后若干分,为初亏前设时。与食甚定真时相减,馀数与食甚定真时相加,为复圆前设时,白经在高弧东,先取复圆,后得初亏,理并同。
  求初亏前设时距分,
  求初亏前设时距弧,
  求初亏前设时对距弧角,初亏前设时在食甚用时前为西,在食甚用时后为东。


作品集
相关文章: